Synthesis, NMR Characterization, and a Simple Application of **Lithium Borotritide**

Chit Than,^{*,†} Hiromi Morimoto,[†] Hendrik Andres,[‡] and Philip G. Williams^{†,§}

National Tritium Labelling Facility, Structural Biology Division, E. O. Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720 and Sandoz Pharma Ltd., Chemical Research and Development, Basle CH-4002, Switzerland

Received July 1, 1996[®]

 $LiBH_4$ is a powerful and selective reagent for regiospecific reduction reactions. A simple synthesis of $LiB^{3}H_{4}$ at near theoretical specific radioactivity is reported. We have treated $Li^{3}H$ synthesized from tritium gas (${}^{3}H_{2}$, \sim 98%) with BBr₃ to produce LiB ${}^{3}H_{4}$ (specific activity = 4120 GBq/mmol = 110 Ci/mmol. The maximum theoretical specific activity of $LiB^{3}H_{4}$ is 4252 GBq/mmol = 115.04 Ci/mmol; 1 matom of ${}^{3}H = 1063 \text{ GBq} = 28.76 \text{ Ci.}$ The tritium labeling performance of the reagent was tested by an exemplary reduction of 2-naphthaldehyde to 2-naphthalenemethanol. $LiB^{3}H_{4}$ and the reduction products were characterized by a combination of ¹H, ³H, and ¹¹B NMR techniques, as appropriate.

Introduction

LiB³H₄ of high specific radioactivity is readily synthesized from the reaction of Li³H (Scheme 1a)¹ with BBr₃ (Scheme 1b). The synthesis is very similar to that of the tritiated borane-THF complex,² with choice of appropriate conditions and stoichiometry to yield borohydride rather than borane (cf. Scheme 1b to 1c). LiBH₄ is often considered an analogue of NaBH₄, but in an ether or THF medium, the Li⁺ cation is a stronger Lewis acid than the Na^+ cation, and this endows $LiBH_4$ with increased reducing power over that of NaBH₄.³ NaBH₄ has been used as a selective reducing agent for aldehydes, ketones, and acid chlorides⁴⁻⁶ and for the reductive displacement of primary and secondary alkyl halides, sulfonate esters, tertiary amines, and disulfonimides.⁷ In addition to this chemistry, LiBH₄ reduces esters and lactones without affecting acids, amides, nitriles, or NO₂ groups.^{8,9} In combination with other reagents, LiBH₄ is capable of reducing epoxides, acids, tertiary amides, and nitriles, while sulfones, sulfoxides, and NO₂ groups remain untouched.9

With these properties, LiB³H₄ is obviously valuable in tritium-labeling reactions since it (i) is a regioselective labeling reagent; (ii) is a stronger reagent than NaBH₄ but possesses much greater selectivity than LiAlH₄,

§ Adjunct Faculty with the Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446. [®] Abstract published in *Advance ACS Abstracts*, November 1, 1996.

(1) Andres, H.; Morimoto, H.; Williams, P. G.; Zippi, E. M. Synth.

Appl. Isot. Labelled Compd. 1994, Proc. Int. Symp., 5th, Allen, J.,
 Voges, R., Eds.; John Wiley and Sons: Chichester, 1995; pp 83–90.
 (2) Than, C.; Morimoto, H.; Andres, H.; Williams, P. G. J. Org. Chem.

- 1995, 60, 7503-7507. (3) Brown, H. C.; Narasimhan, S.; Choi, Y. M. J. Org. Chem. 1982,
- 47, 4702-4708. (4) Chaikin, S. W.; Brown, W. G. J. Am. Chem. Soc. 1949, 71, 122-

125. (5) Walker, E. R. H. Chem. Soc. Rev. 1976, 5, 23-50.

- (6) Brown, H. C.; Khrishnamurthy, S. Tetrahedron 1979, 35, 567– 607.
- (7) Hutchins, R. O.; Kandasamy, D.; Dux, F., III; Maryanoff, C. A.; J. Butshin, R. G., Rahassany, D., Dux, F., Hi, Waryahon, C. A.;
 Rotstein, D.; Goldsmith, B.; Burgoyne, W.; Cistone, F.; Dalessandro,
 J.; Puglis, J. J. Org. Chem. 1978, 43, 2259–2266.
 (8) Nystrom, R. F.; Chaikin, S. W.; Brown, W. G. J. Am. Chem. Soc.

Scheme 1. Preparation and Use of LiB³H₄^a

- n-Bu-Li + ${}^{3}H_{2} \longrightarrow Li^{3}H + n-Bu-{}^{3}H$ (a) $4 \text{Li}^{3}\text{H} + \text{BBr}_{3} \longrightarrow \text{LiB}^{3}\text{H}_{4} + 3 \text{LiBr}$ (b)
- $3 \text{Li}^3\text{H} + 4 \text{BF}_3 \longrightarrow \text{B}^3\text{H}_3 + 3 \text{LiBF}_4$ (c)
- R-CHO + LiB³H₄ → R-CH³H-OH (d)

^a (a) Synthesis of Li³H. Reaction conditions: 1.1 mol TMEDA, hexanes as the solvent, 1 h at rt; (b) Synthesis of $LiB^{3}H_{4}$ from Li³H. Reaction conditions: THF as the solvent, addition of BBr₃ at 0 °C, 15 min at 0 °C, 30 min at 70 °C; (c) Synthesis of the B3H3-THF complex from Li³H. Reaction conditions: THF as the solvent, 1 h at 70 °C; (d) Reduction of an aldehyde with LiB³H₄. Reaction conditions: THF as the solvent, 2 h at rt.

especially for the reduction of esters in the presence of other reducible groups;¹⁰ (iii) is a very efficient reagent for the conversion of lactones in the synthesis of labeled carbohydrates;¹¹ (iv) is readily soluble in a wide range of solvents such as alcohols and ethers³ so that homogeneous reductions are possible; and (v) has a higher (R) diastereoselectivity than NaBH₄ and KBH₄, and thus synthesis of chiral biological products can be readily achieved through diastereoselective reduction.¹²

There are numerous reports on the synthesis of LiBH₄, most of which are impractical on a small scale or for the preparation of a highly tritiated material. In the early work, LiBH₄ was synthesized from the reaction between LiC₂H₅ and diborane or Al(BH₄)₃.¹³ LiBH₄ can be prepared from LiH by treatment with B(OCH₃)₃, but extraction of the product from the crude reaction is difficult.¹⁴ NaBH₄ can also be converted to LiBH₄ by treatment with LiBr or LiCl.15,16

[†] National Tritium Labelling Facility.

[‡] Sandoz Pharma Ltd.

¹⁹⁴⁹, *71*, 3245-3246.

⁽⁹⁾ Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis; VCH Publishers, Inc.: New York, 1991; pp 1 - 193.

⁽¹⁰⁾ Jeanloz, R. W.; Walker, E. R. H. Carbohydr. Res. 1967, 4, 504-506.

⁽¹¹⁾ Isbell, H. S.; Frush, H. L.; Moyer, J. D. J. Res. Nat. Bur. Stand. 1960, 64A, 359-362. (12) Maitra, U.; Mathivanan, P. Tetrahedron: Asymmetry 1994, 5,

^{1171-1174.} (13) Schlesinger, H. I.; Brown, H. C. J. Am. Chem. Soc. 1940, 62,

^{3429-3435.}

⁽¹⁴⁾ Schlesinger, H. I.; Brown, H. C.; Finholt, A. E. J. Am. Chem. Soc. 1953, 75, 205-209.

⁽¹⁵⁾ Schlesinger, H. I.; Brown, H. C.; Hyde, E. K. J. Am. Chem. Soc. 1953, 75, 209-213.

⁽¹⁶⁾ Brown, H. C.; Choi, Y. M.; Narasimhan, S. Inorg. Chem. 1981, 20, 4454-4456.

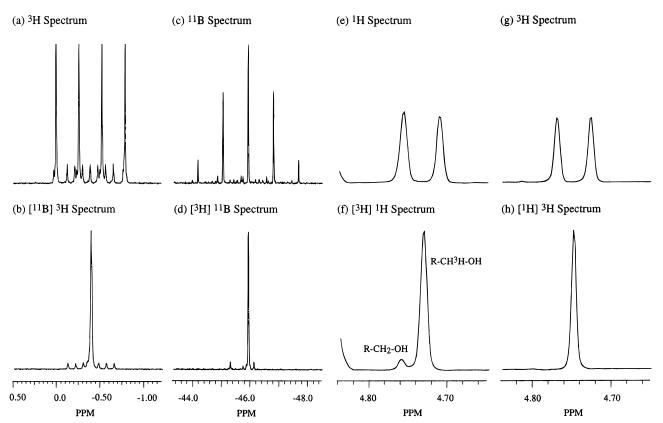


Figure 1. NMR spectra of LiB³H₄ in NaOH/CD₃OD (a-d): (a) 320 MHz ³H spectrum (0.5 to -1.2 ppm); (b) selective ¹¹B-decoupled ³H NMR spectrum; (c) 96 MHz ¹¹B NMR spectrum (-43.3 to -48.5 ppm); (d) ³H-decoupled ¹¹B spectrum. NMR spectra (4.844.65 ppm) of 2-naphthalenemethanol in CD₃OD (e-h): (e) 300 MHz ¹H NMR spectrum; (f) ³H-decoupled ¹H NMR spectrum; (g) 320 MHz ³H NMR spectrum; (h) ¹H-decoupled ³H NMR spectrum.

Hydrogen isotope labeled LiBH₄ may be prepared by the reaction of labeled diborane with LiC₂H₅,¹³ LiH,¹⁷ or LiOC₂H₅.¹⁷ The rapid exchange of ²H₂O or tritiated water with LiBH₄ has been reported, but after the exchange was complete, 50% of the borohydride had been hydrolyzed.^{18,19} LiB²H₄ was prepared²⁰ from (CH₃)₃N:B²H₃ and LiOCH₃, but it was difficult to obtain a pure product. Tritiated LiBH₄ with a low tritium content was prepared by simply heating the solid with a mixture of H_2 and T_2 gas.²¹ Our recent experience²² with this exchange method for LiBH₄ suggests that borohydride with 70-75% of the theoretical tritium content is routinely available but that it is impractical to pursue material with a higher specific activity by this approach. In addition, we believe that heat treatment of the borohydride reduces its chemical reactivity.

The most convenient one-pot synthesis of LiBH₄ is the reduction of boron halide by lithium hydride.^{23,24} It is also the most successful method in preparing LiB²H₄, with a reported yield of 57% and 98-99% D.20 As expected from the reactions in Scheme 1, our investigations into the preparation of the tritiated borane-THF

complex (Scheme 1c)² sometimes yielded LiB³H₄,²⁵ but the reagent was not well characterized and was never used in reduction reactions. With our ability to make finely divided and highly reactive Li³H^{1,26} and our recent experience with borane synthesis,² we made the production of LiB³H₄ with high specific activity our focus. Our goal was to develop a routine synthesis of LiB³H₄, characterize it by NMR spectroscopy, and study the products of some simple reduction reactions (Scheme 1d).

Results and Discussion

Initial investigations were carried out using deuterium gas to demonstrate the synthesis of LiB²H₄ from Li²H, prior to any tritium experiments. In these early studies, it became clear from the ¹¹B NMR analyses that Li²H reduction of BBr₃ gave a higher yield of LiB^2H_4 (75%) than the Li²H reduction of BF₃ (<50%). Calculation of the stoichiometry and the yields assumed quantitative formation of Li²H from *n*-BuLi. Once the synthetic protocol was established, a sample of LiB³H₄ was prepared for NMR study and use in an exemplary reaction. The LiB³H₄ yield was assumed to be 75% based on the preliminary deuterium experiments. The full experimental details of NMR studies analogous to those described below have appeared elsewhere.^{2,22}

NMR Characterization of Lithium Borotritide. The ¹⁰B- and ¹¹B-coupled 320 MHz ³H NMR spectrum obtained from LiB³H₄ is shown in Figure 1a. The pattern

⁽¹⁷⁾ Schlesinger, H. I.; Brown, H. C.; Hoekstra, H. R.; Rapp, L. R. J. Am. Chem. Soc. 1953, 75, 199-204.

⁽¹⁸⁾ Conforth, R. H. *Tetrahedron* **1970**, *26*, 4635–4640.
(19) Piper, J. U. *J. Chem. Educ.* **1986**, *63*, 442–443.
(20) Atkinson, J. G.; MacDonald, D. W.; Stuart, R. S.; Tremaine, P. H. Can. J. Chem. 1967, 45, 2583-2588.

⁽²¹⁾ Brown, W. G.; Kaplan, L.; Wilzbach, K. E. J. Am. Chem. Soc. **1952**, 74, 1343–1344.

⁽²²⁾ Than, C.; Morimoto, H.; Andres, H.; Williams, P. G. J. Labelled Compd. Radiopharm. 1996, 38, 693-711.

⁽²³⁾ Wittig, G.; Hornberger, P. Justus Liebigs Ann. Chem. 1952, 577, 11 - 18

⁽²⁴⁾ Elliott, J. R.; Boldebuck, E. M.; Roedel, G. F. J. Am. Chem. Soc. **1952**, *74*, 5047–5052.

⁽²⁵⁾ Andres, H.; Morimoto, H.; Williams, P. G. Synth. Appl. Isot. (25) Andres, H., Mormoto, H., Windins, F. G. Synth. Appl. 1861.
 Labelled Compd. 1991, Proc. Int. Symp., 4th; Buncel, E., Kabalka, G.
 W., Eds.; Elsevier: Amsterdam, 1992; pp 40–45.
 (26) Pi, R.; Friedl, T.; Schleyer, P. v. R.; Klusener, P.; Brandsma, L.
 J. Org. Chem. 1987, 52, 4299–4303.

is centered at $\delta = -0.40$ ppm and consists of an intense quartet $[J(^{3}H^{-11}B) = 84.5 \text{ Hz}]$ due to ¹¹B coupling (I = $\sqrt[3]{}_2$, 80.42%) that is superimposed on a weaker septet $[J(^{3}H^{-10}B) = 28.3 \text{ Hz}]$ due to ^{10}B coupling (I = 3, 19.58%). The observed chemical shift and coupling constants $[J(^{3}H^{-11}B), J(^{3}H^{-10}B)]$ are similar to published data.^{22,27,28} A weak and unresolved quartet of doublets attributable to Li¹¹BH³H₃ was also observed at the base of the main quartet. Selective irradiation of ¹¹B leads to the collapse of both the Li¹¹B³H₄ and Li¹¹BH³H₃ quartets to give the large singlet and downfield shoulder shown in Figure 1b. The Li¹⁰B³H₄ septet is unaffected by the irradiation and is clearly observed with the central line obscured by the singlets from the ¹¹B species. The ¹¹B NMR spectra of the same $LiB^{3}H_{4}$ sample are shown in Figure 1c,d. The ¹H- and ³H-coupled ¹¹B spectrum in Figure 1c shows a quintet centered at $\delta = -45.9$ ppm (reference: BF₃·OEt₂) in THF = 0 ppm). The observed splitting is dominated by the most abundant coupling partner (³H) and the approximate $J({}^{3}H-{}^{11}B) = 84.5$ Hz. The other weak multiplets are attributable to the ¹H- and ³H-coupled ¹¹B signals from LiBH³H₃. When ³H was decoupled from ¹¹B (Figure 1d), a singlet attributable to $LiB^{3}H_{4}$ with the measured intensity of 87.6% and a small doublet attributable to LiBH³H₃ (12.4%) were observed. There is a small unassigned single peak at ca. -45.8 ppm. No ¹¹B signals arising from LiBH₂³H₂, LiBH₃³H, and LiBH₄ isotopomers were detected, and this suggests that the product has a very high tritium incorporation (calculated 96.9%). Calculation of the deuterium content in $LiB^{2}H_{4}$ from the ¹¹B NMR of an analogous deuterium synthesis gave 98.2% D. The isotope effect ($\Delta \delta = 0.218 \pm 0.003$ ppm at 96.28 MHz) on the ¹¹B chemical shift induced by ³H substitution is readily measured from the spectrum in Figure 1d. This value compares well with the literature values for the ²H primary isotope effects on ¹¹B chemical shifts.^{27,28}

Reduction Using Lithium Borotritide. The rest of the reagent stock solution (*ca.* 350 μ L) was used for the reduction of 2-naphthaldehyde to 2-naphthalenemethanol (Scheme 1d). The product was isolated²² and analyzed by radio-HPLC followed by both ¹H and ³H NMR spectroscopy. In comparable deuterium reactions, deuterated products were analyzed by ¹H and ²H NMR spectroscopy, HPLC, and mass spectrometry.

HPLC analysis of the reduction product, 2-naphthalenemethanol, showed that the chemical yield was high (89%) and that essentially all of the radioactivity was in the desired labeled product. Estimates of the specific activity were made by liquid scintillation counting of the isolated HPLC peak effluent (910 GBq/mmol, 86% of the theoretical value) and by analysis of NMR spectra. The 300 MHz ¹H NMR spectra of the reduction product are shown in Figure 1e,f. The ³H-coupled ¹H spectrum in Figure 1e shows a doublet $[J(^{1}H-^{3}H) = 13.90 \text{ Hz}]$ due to the ¹H-³H coupling in the singly tritiated R-CH³H-OH species. One peak of the doublet is taller than the other because it is superimposed on a small singlet from the $R-CH_2-OH$ species. The doublet collapsed into a singlet with double the intensity when ³H was selectively irradiated (Figure 1f). The tritium isotope shift ($\Delta \delta$) was measured as 0.031 ± 0.002 ppm. Calculation of the specific activity from the peak integrals in Figure 1f gives a value of 1020 GBq/mmol (96.2% of the theoretical maximum of 1063 GBq/mmol), which is very close to the available tritium in the reagent LiB³H₄ (96.9%) as determined from the ¹¹B NMR spectra (Figure 1d). It is not clear why there is such a large disparity between the HPLC and NMR results for the specific activity (86 vs 96% tritium). The two methods have entirely different bases, with the HPLC approach combining data from a small measured mass (compared to an appropriate standard) and a large measured radioactivity to yield the specific activity. In contrast, the NMR approach uses only the measured integral (or intensity) of the relevant isotopomers to project the specific activity and makes no assumptions about chemical purity or standardization.

The 320 MHz (¹H-coupled) ³H NMR spectrum in Figure 1g shows a doublet from the R–CH³H–OH species. As expected, this doublet collapsed to a singlet when ¹H was irradiated (Figure 1h). The observed coupling constant $[J(^{1}H-^{3}H) = 13.81 \text{ Hz}]$ matches previous observations.^{2,22} The product NMR spectra shown in parts e–h of Figure 1 were very clean and showed minimal levels of byproducts.

Conclusions

With the development of hydride reducing chemistry over the last 60 years, NaBH₄ and LiAlH₄ have been the most widely used reagents. $NaB^{3}H_{4}^{22}$ and $LiAl^{3}H_{4}^{29}$ can be prepared at ca. 75% and >95% of the maximum theoretical tritium content, respectively, and reductive tritiation reactions have relied heavily on the use of these two reagents, despite their known limitations.⁵ LiAlH₄ is an exceedingly powerful reagent, capable of reducing many organic functional groups, but is of little value for selective reductions. NaBH₄ is too mild to achieve efficient reductions for some functional groups, e.g., epoxides, esters, and lactones. LiBH₄ has a reactivity that is intermediate between those two extremes,^{5,30} with a reducing power which can be easily modified using catalysts.³⁰⁻³³ These properties give access to a wide spectrum of selective reductions, and consequently, specific labeling.

We have demonstrated the synthesis and use of highly deuterated or tritiated LiBH4 on a microscale with a yield of ca. 75%. ³H and ¹¹B NMR analysis of LiB³H₄ showed close to 100% tritium content. Both the ²H and ³H reagents smoothly reduced 2-naphthaldehyde to the corresponding alcohol and gave regiospecific labeling, excellent yields (ca. 90%), and very high isotope abundances (≥96% for tritium). The reagents may be prepared and reductions commenced in less than 3 h in a simple reaction apparatus. The simple synthesis of LiB²H₄ and LiB³H₄, neither of which is commercially available, should open the door to a new phase of regioselective tritium and deuterium labeling chemistry. In addition to the simple aldehyde reduction presented here, our experience with LiB³H₄ has included the complete reduction of an acid chloride to R-C³H₂-OH in

⁽²⁷⁾ James, B. D.; Smith, B. E.; Newman, R. H. J. Chem. Soc., Chem. Commun. 1974, 294–295.

⁽²⁸⁾ Smith, B. E.; James, B. D.; Peachey, R. M. Inorg. Chem. 1977, 16, 2057–2062.

⁽²⁹⁾ Andres, H.; Morimoto, H.; Williams, P. G. J. Chem. Soc., Chem. Commun. 1990, 627–628.

⁽³⁰⁾ Brown, H. C.; Narasimhan, S. J. Org. Chem. 1982, 47, 1604–1606.

⁽³¹⁾ Brown, H. C.; Narasimhan, S. *Organometallics* **1982**, *1*, 762–765.

⁽³²⁾ Brown, H. C.; Narasimhan, S. J. Org. Chem. **1984**, 49, 3891–3898.

⁽³³⁾ Arase, A.; Hoshi, M.; Yamaki, T.; Nakanishi, H. J. Chem. Soc., Chem. Commun. **1994**, 855–856.

the presence of an aryl halide³⁴ and the stereoselective reduction of a ketone in the presence of a secondary amide.35

Experimental Section

General. Very similar materials and analytical methods were recently reported for the preparation of the tritiated borane-THF complex.² BBr₃ (1.0 M solution in hexanes) was used as purchased from Aldrich Chemical Co. All NMR analyses (1H, 2H, 3H, and 11B) were performed on a Bruker AC-300 NMR spectrometer.

Lithium Borotritide Synthesis. As previously described,² 0.4 mmol of Li³H was prepared in a 5 mL round bottom flask with a side arm having a septum inlet. After the Li³H was dried under vacuum for 1 h, dry nitrogen gas was introduced into the flask to a pressure of 80 kPa and tetrahydrofuran (THF, 650 μ L) was added. The flask was cooled using a 0 °C ice bath, and BBr₃ (0.1 mmol, 100 μ L of 1.0 M solution in hexanes) was injected dropwise into the flask. After the solution was stirred at 0 °C for 15 min, it was refluxed at 70 °C with constant stirring for 30 min. One aliquot (300 μ L) was withdrawn from the flask to be used in another reduction reaction,³⁴ and a second aliquot (80 μ L) was taken for NMR study. The solvents were evaporated from the small aliquot, the residue was dissolved in NaOH/CD₃OD (400 μ L, saturated solution), and the solution was transferred into a Teflon tube for NMR study. Full descriptions of analogous NMR studies have appeared elsewhere. $^{2,22}\,$ The LiB^3H_4 yield was assumed to be 75% based on preliminary deuterium experiments.

(34) Latli, B.; Than, C.; Morimoto, H.; Williams, P. G.; Casida, J.
E. J. Labelled Compd. Radiopharm. 1996, 38, 971–978.
(35) Dischino, D. D.; Morimoto, H.; Williams, P. G. User project at

Lithium Borotritide Reduction of Naphthaldehyde. A solution of 2-naphthaldehyde (4.7 mg, 0.03 mmol in 225 µL of CH₃OH) was injected into a flask containing the residual solution of LiB³H₄ (0.035 mmol in *ca.* 350 μ L of THF/hexanes, 96.9% 3 H, 145 GBq = 3.9 Ci) and stirred at room temperature. After 2 h of stirring, the reaction was quenched by addition of CH₃OH (300 μ L). The reduction product was isolated²² and analyzed by radio-HPLC followed by both ¹H and ³H NMR spectroscopy. In comparable deuterium reactions, the deuterated products were analyzed by ¹H and ²H NMR spectroscopy, HPLC, and mass spectrometry, which allowed calculation of the deuterium content (% D) in the molecule. Deuterium experiment: yield 95%; 80% D; MS *m*/*z* 160 (9.9), 159 (72.9), 158 (17.2); ²H NMR (CH₃OH, ¹H-decoupled) δ 4.74 (CH²H). Tritium (98%) experiment: yield 89%; specific activity (by HPLC) 910 GBq/mmol, (by 300 MHz ¹H NMR, CD₃OD, ³Hdecoupled) 1020 GBq/mmol; ¹H NMR (CD₃OD, ³H-decoupled) δ 4.80 (CH₂, 7.2%), 4.75 (CH³H, 92.8%); ³H NMR (CD₃OD, ¹Hdecoupled) δ 4.75 (CH³H, 100%).

Acknowledgment. The National Tritium Labelling Facility is supported by the Biomedical Research Technology Program, National Center for Research Resources, U.S. National Institutes of Health, under Grant P41 RR01237, through the Department of Energy, Contract DE-AC03-76SF00098 with the University of California.

Note Added in Proof. A further example of the use of LiB³H₄ with high specific activity was recently published: Huguenin, P. N.; Shimma, N. J. Labelled Compd. Radiopharm. 1996, 38, 999-1005.

JO961239U

the NTLF, unpublished.